

Oscillators

- Electronic circuits that produces output signal of any specific frequency.
- An oscillator consists of an amplifier and a feedback network
- 'Active device' either Transistor or Op Amp is used as an amplifier.

Types of Oscillators

- 1. **RC oscillators**: They use a resistance-Capacitance network to determine the oscillator frequency.
 - They are suitable for low (audio range) and moderate frequency applications (5Hz to 1MHz). They are further divided as,

RC phase shift oscillator Wien bridge oscillator Twin-T oscillator

- 2. **LC oscillators**: Here, inductors and capacitors are used either in series or parallel to determine the frequency.
 - They are more suitable for radio frequency(1 to 500 MHz) and further classified as,

Cont'd

- Hartley Oscillators
- Colpitts Oscillators
- Clapp Oscillators
- Armstrong oscillators
- 3. **Crystal oscillator**: Like LC oscillators it is suitable for radio frequency applications. But it has very high degree of stability and accuracy as compared to other oscillators.

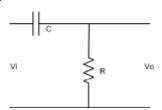
Types of Oscillations Oscillations Undamped Undamped Overdamped Sustained AB<1 AB>1 AB=1

Barkhausen Criterion

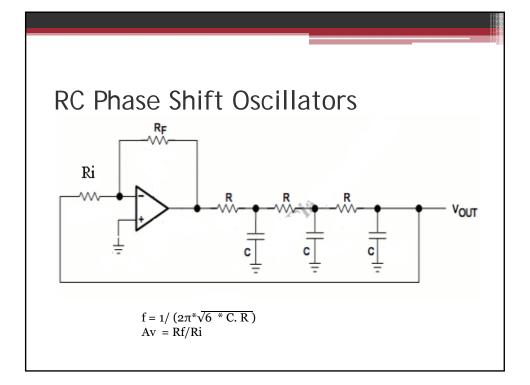
- Barkhausen Criterion
 - Condition 1
 - The magnitude of the loop gain (A β) must be unity.
 - Beta = feed back Ratio : The fraction of the output given at the input

$$A_f = \frac{A}{1 - A\beta}$$

Cont'd

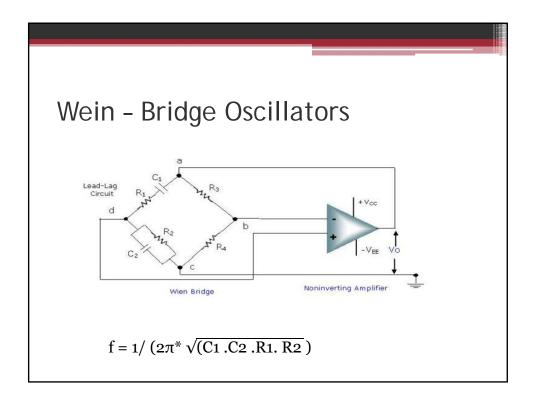

- When $A\beta = 1 A_f = \infty = Vo/Vi$
 - $\,$ ∨o/Vi = ∞ , implies that Vi = 0
 - Means without giving any input voltage we are getting output Vo
 - Dondition 2
 - The second condition is that the phase shift around the loop must be 360° or 0° . This means, the phase shift through the amplifier and feedback network has to be 360° or 0°

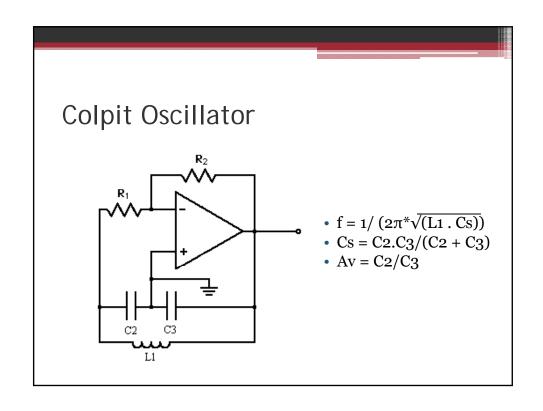
Cont'd

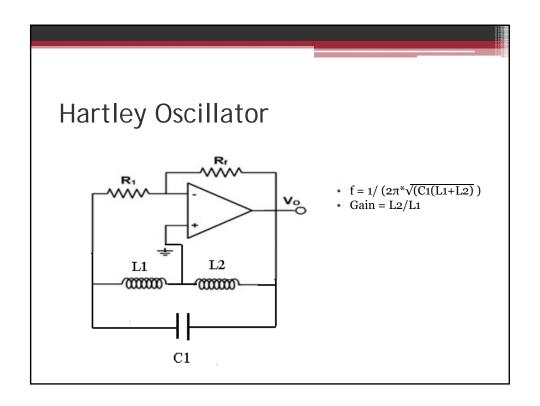

- An amplifier if given the positive feed back results in Oscillations
- Positive Feed Back: Output voltage and input voltage should be in phase.
- For making positive feedback, introduce a phase shift network, that network produces another 180° phase shift
- total 180° + 180° = 360° = 0°

How to produce Phase Shift

• Introduce RC Network to produce the phase shift.




- $\Phi = \tan^{-1} (Xc / R)$
 - $^{\circ}$ When Xc = 0, tan Φ =0 , Φ = 0°
 - When $R = o \tan \Phi = \infty$, $\Phi = 90^{\circ}$
 - By having 1-RC circuit, we can have a phase difference of $o 90^{\circ}$
 - So phase shift using 1RC is max 90, but mostly less than $90^{\rm o}$
 - ${}^{\raisebox{-.4ex}{$\scriptscriptstyle\bullet$}}$ A min of 3-RC circuits is required to produce phase shift of 180°



Problem

- ullet Determine the value of R_f necessary for the circuit to operate as an oscillator, Determine the frequency of oscillation.
 - Given : C= $0.01\mu F$, R= $10k\Omega$, Av= 29
 - Solution
 - $f = 1/(2\pi^*\sqrt{6} * C. R) = 1/(2\pi^*\sqrt{6} * 0.01\mu.10k)$ f = 650 Hz Av = Rf/Ri $Rf = Av^* Ri = 29 * 10k = 290k\Omega$

