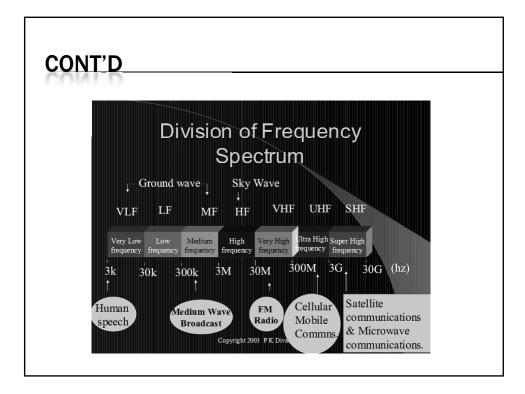
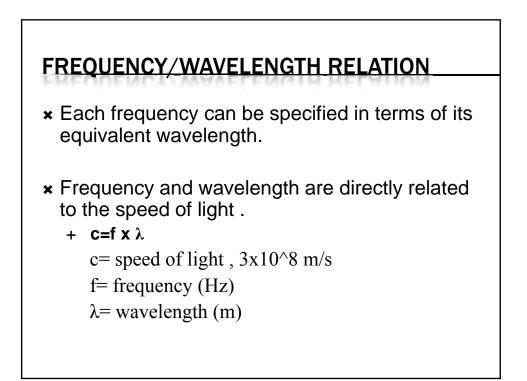
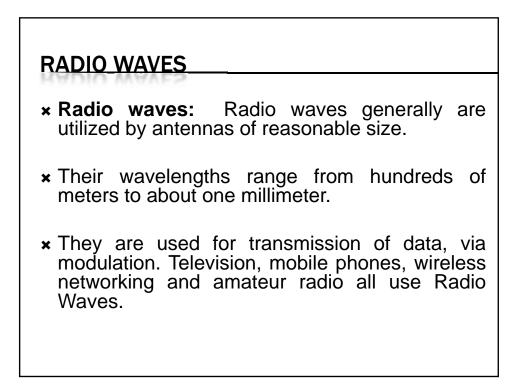

LECTURE:2


ELECTROMAGNETIC SPECTRUM

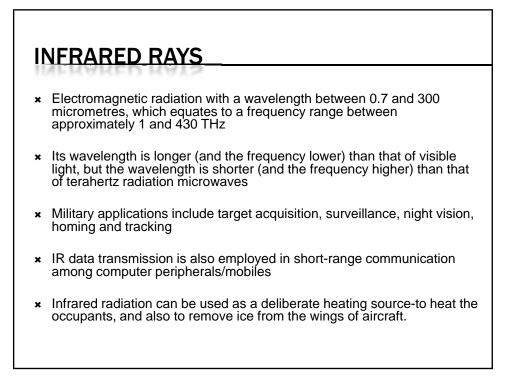

ELECTROMAGNETIC SPECTRUM

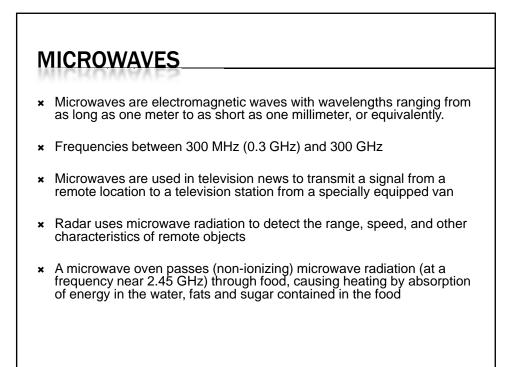
- ➤ Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular to the direction in which the wave propagates or travels.
- ✗ The electric and magnetic fields oscillate together between maximum positive and maximum negative values.
- The frequency of these oscillations and the wavelength of the waves determines whether the electromagnetic wave is visible light (and its color), ultraviolet light, infrared light, radio waves, X-rays, or gamma rays

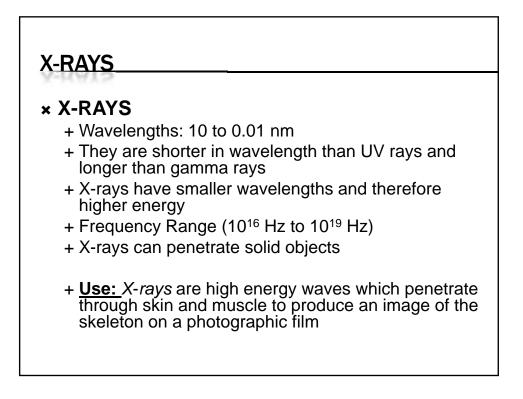


<u>Color</u>	Wavelength interval	Frequency interva
<u>red</u>	~ 625 to 740 nm ~ 590 to 625 nm	~ 480 to 405 THz ~ 510 to 480 THz
orange vollow		
blue		
violet		
	 565 to 590 nm 520 to 565 nm 500 to 520 nm 430 to 500 nm 380 to 430 nm 	 ~ 530 to 510 THz ~ 580 to 530 THz ~ 600 to 580 THz ~ 700 to 600 THz ~ 790 to 700 THz

CONT'D

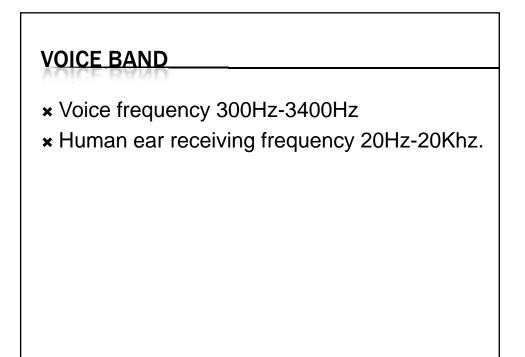

× Common Radio Bands:


- + Extremely low frequency
- + Very low frequency (VLF) -3 kHz to 30 kHz
- + Long wave
- + Medium wave (AM)
- + Shortwave (HF or high frequency) -(3–30 MHz)
- + Very high frequency (VHF) 30 MHz to 300 MHz
- + Ultra high frequency (UHF)- 300 MHz and 3 GHz
- + FM broadcast band, used for broadcasting FM radio stations, goes from 87.5 to 108.0 MHz


Band	Range	Propagation	Application
VLF (very low frequency)	3-30 kHz	Ground	Long-range radio navigation
LF (low frequency)	30-300 kHz	Ground	Radio beacons and navigational locators
MF (middle frequency)	300 kHz-3 MHz	Sky	AM radio
HF (high frequency)	3-30 MHz	Sky	Citizens band (CB), shi <i>pi</i> aircraft communication
VHF (very high frequency)	30-300 MHz	Sky and line-of-sight	VHF TV, FM radio
UHF (ultrahigh frequency)	300 MHz-3 GHz	Line-of-sight	UHFTV, cellularphones, paging, satellite
SHF (superhigh frequency)	3-30 GHz	Line-of-sight	Satellite communication
EHF (extremely high frequency)	30-300 GHz	Line-of-sight	Radar, satellite

UV (ULTRA VIOLET)

- Ultraviolet (UV) radiation is defined as that portion of the electromagnetic spectrum between x rays and visible light, i.e., between 40 and 400 nm
- ***** Germicidal lamps are designed to emit UVC radiation because of its ability to kill bacteria



- ★ Gamma rays typically have frequencies above 10¹⁹ Hz (10⁻¹⁰ to 10⁻¹⁵) m
- Gamma-rays have the smallest wavelengths and the most energy of any other wave in the electromagnetic spectrum.
- Gamma-rays can kill living cells, a fact which medicine uses to its advantage, using gammarays to kill cancerous cells.
- Due to their tissue penetrating property, gamma rays/X-rays have a wide variety of medical uses such as in CT Scans and radiation therapy

